How to use the MINOS near detector (or any other MINOS-like detector) to estimate the ν_e component at an arbitrary far detector location ## Michał Szleper Northwestern University - Everything is old and has been shown more than once. - This is mainly the idea, little has been really done (to my best knowledge). #### The idea of a correlation matrix When $\Theta_N \neq \Theta_F$: - The same parent pion beam strongly correlates the Near and Far spectra, but $E_{Far} \neq E_{Near}$. - Each neutrino observed in the near detector \equiv expected certain flux of neutrinos in the far detector, with $P(E_{Far}, E_{Near}) \neq \delta(E_{Near})$: $$\frac{dN_{Far}}{dE_{Far}} = \int P(E_{Far}, E_{Near}) \frac{dN_{Near}}{dE_{Near}} dE_{Near}.$$ • $P(E_{Far}, E_{Near})$ determined primarily by beamline geometry (and location of the far detector). #### The idea of a correlation matrix II #### How to get $P(E_{Far}, E_{Near})$ - Every decaying pion is assigned to weights: $w_{Near/Far} = w_{Near/Far}(E_{\pi}, \Theta_{\pi}, z, r)$, defined as the fraction of all decays with a neutrino ending up in the near/far detector. - Neutrino energies $E_{Near/Far}$ are unambiguously given by $E_{\pi}, \Theta_{\pi}, z, r$, assuming point-like detectors (good approximation for NuMI). - ullet For a given pion decay, every neutrino with E_{Near} implies w_{Far}/w_{Near} neutrinos with E_{Far} . - For a non-trivial, known, pion decay distribution $\Phi_{\pi}(E_{\pi}, \Theta_{\pi}, z, r)$: $$P(E_{Far}, E_{Near}) = \frac{\int \int \int \int \Phi_{\pi} w_{Far} dE_{\pi} d\Theta_{\pi} dz dr}{\int \int \int \int \Phi_{\pi} w_{Near} dE_{\pi} d\Theta_{\pi} dz dr}$$ with integration over all phase space yielding E_{Near} and E_{Far} in the numerator, and E_{Near} in the denominator. ## The idea of a correlation matrix • Far spectrum prediction in finite energy bins: $$P(E_{Far}, E_{Near}) \rightarrow M(N_{bins} \times N_{bins}).$$ $$\overrightarrow{N}_{Far} = M \cdot N_{Near}$$ M - Near-to-far correlation matrix, constructed from correlated (E_{Near}, E_{Far}) pairs; in general non-diagonal. ## Off-axis experiment - ν_e background - ullet Hadron production related uncertainties in evaluating the intrinsic ν_e component of the beam are minimized by using ν_μ information from the on-axis near detector. - ullet In the same pion beam, the number of intrinsic ν_e is strongly correlated to the number of ν_μ measured in the near detector. # Off-axis experiment - ν_e background II - Optimization of the prediction is done by appropriately choosing the energy range of ν_{μ} , such that they come from as much as possible from the same pions as the ν_e in the signal region. - A simple ratio of events (ν_e Far Off-axis)/(ν_μ Near On-axis), both integrated within $1 < E_\nu < 3$ GeV, is constant within $\sim 6\%$ (for LE and assuming pion decays only). - \bullet For the ME option, a similar result may be obtained by looking at the number of ν_u Near On-axis within 3-8 GeV. - Kaon decays contribute less than 10% to ν_{μ} in the near detector in this energy region, therefore correlations may decrease by $10\% \to 6\%$ may become 6.6%. Other contributions are negligible. - Improvements possible: next page. ## Off-axis experiment - ν_e background III - 1. In an analogous way to the Near-to-Far correlation matrix for ν_{μ} 's, a Near- ν_{μ} -to-far- ν_{e} correlation matrix can be computed \rightarrow possibly a more accurate ν_{e} prediction than from a simple ratio, - 2. Can also correlate $far-\nu_e$ to near- $\overline{\nu}_{\mu}$. These are more strongly correlated, as coming from the same muon decays. Both methods may be a valuable cross check of each other. #### If so simple, why not done yet? - Standard GNuMI ntuples (produced by J.Hylen and G.Unel) contain a record of only one neutrino type per event $\rightarrow \nu_{\mu}$, $\bar{\nu_{\mu}}$ and ν_{e} events are not correlated! - Need to change the standard GNuMI ntuple format such that all neutrinos in an event are recorded (if more than one), in order to compute the appropriate correlation matrices. Then, generation of a huge statistics is required and creation of new ntuples.